Total temporomandibular joint (TMJ) replacement surgery aims to improve mandibular function, reduce pain and enhance quality of life in patients suffering from end-stage TMJ disorders. Traditional post-operative jaw evaluation is carried out using measurement of maximum interincisal opening distance; however, this can correlate poorly to joint function. The present study aimed to evaluate three-dimensional (3D) jaw motion during border movements and chewing in unilateral total TMJ replacement patients and healthy controls. Motion analysis experiments were performed on six unilateral total TMJ replacement patients and ten age-matched healthy controls. Subject-specific motion tracking plates worn by each participant were registered to CT scans of each participant’s skull and mandible to enable anatomical mandibular kinematics measurement using an optoelectronic system. Participants performed 15 repetitions of maximal opening, protrusion, lateral excursions, and chewing cycles. Total TMJ replacement patients had significantly smaller incisal displacements at maximum mouth opening relative to the controls (median difference: 7.1 mm, p = 0.002) and decreased anterior translation of the prosthetic condyle (median difference: 10.5 mm, p = 0.002). When TMJ replacement subjects chewed using their contralateral molars, there was a significant increase in inferior condylar translation of the non-working condyle (median difference: 9.7 mm, p = 0.016). This study found that unilateral total TMJ replacement surgery was associated with mouth opening capacity within the range of healthy individuals, but reduced anterior movement of the prosthetic condyle and restricted protrusion and lateral excursions. The results provide future direction for prosthetic TMJ design to enhance postsurgical implant functionality and improve long-term clinical outcomes for prosthesis recipients.