The otolith organs are housed in the inner ear and are responsible for sensing accelerations and gravity. These inertial sensing systems are modeled in this thesis as a three material system consisting of a rigid otoconial plate attached to the skull by a gel layer, surrounded by a viscous endolymph fluid. The gel layer is considered to be a viscoelastic solid, and modeled as a simple Kelvin element. The governing differential equations are derived and nondimensionalized, yielding three nondimensional parameters: nondimensional density, R, nondimensional viscosity, M, and nondimensional elasticity, ϵ. The equations are solved using ünite difference techniques on a digital computer. By comparing the model’s response with previous biological research, values for the nondimensional parameters are found. The value of R is 0.75 and the value of ϵ is between 0.3 and 0.075. While the value of M is placed between 5. and 10., results indicate that to properly model the long time response of the otolith, a single and constant value for viscosity is not feasible.