A novel multi-tank thermal energy storage (TES) was evaluated experimentally and numerically. The multi-tank storage is based on the interconnection of standard hot water storage tanks by a single charge flow loop. Each tank is charged through a thermosyphon loop and natural convection heat exchanger (NCHE). Both series- and parallel-connected configurations were investigated and results show that high degrees of stratification can occur.
To predict the performance of the series- and parallel-connected multi-tank TES, a numerical model was developed and implemented in the TRNSYS simulation environment. Laboratory tests were also conducted to measure the unit’s performance under charge conditions representative of combinations of clear and overcast days. The effects of rising and falling charge loop temperatures and power levels on storage temperatures and heat transfer rates were studied and indicated that sequential stratification was achieved in the series-connected storage.
Under certain conditions, reverse flow through the thermosyphon loops was identified, leading to destratification and carry-over of heat to the downstream storage tanks. Consequently, a new model was developed and showed to model reverse thermosyphon operation. A subsequent analysis showed that these effects could be minimized by careful system design.
To quantify the relative benefits of the sequentially stratified TES, values of exergy stored versus time were determined and compared against fully stratified and fully mixed storages. Results show that the series configuration closely matches the exergy level attained by a perfectly stratified storage.
Finally, annual simulations conducted for a typical multi-family installation showed that the multi-tank storage performed at a level comparable to a single, fully stratified, storage.