Background: Scoliosis is spinal curvature that may progress to require surgical stabilisation. Risk factors for progression are little understood due to lack of population-based research, since radiographs cannot be performed on entire populations due to high levels of radiation. To help address this, we have previously developed and validated a method for quantification of spinal curvature from total body dual energy X-ray absorptiometry (DXA) scans. The purpose of this study was to automate this quantification of spinal curve size from DXA scans using machine learning techniques.
Methods: To develop the automation of curve size, we utilised manually annotated scans from 7298 participants from the Avon Longitudinal Study of Parents and Children (ALSPAC) at age 9 and 5122 at age 15. To validate the automation we assessed (1) agreement between manual vs automation using the Bland-Altman limits of agreement, (2) reliability by calculating the coefficient of variation, and (3) clinical validity by running the automation on 4969 non-annotated scans at age 18 to assess the associations with physical activity, body composition, adipocyte function and backpain compared to previous literature.
Results: The mean difference between manual vs automated readings was less than one degree, and 90.4 % of manual vs automated readings fell within 10°. The coefficient of variation was 25.4 %. Clinical validation showed the expected relationships between curve size and physical activity, adipocyte function, height and weight.
Conclusion: We have developed a reasonably accurate and valid automated method for quantifying spinal curvature from DXA scans for research purposes.