Resonant frequencies have been suggested as a mechanism of brain injury since these vibrations can transfer energy into the brain. Study of the vibrational response of the craniofacial skeleton to impact is limited in literature. In this research, four cadaver specimens were impacted at five locations on the craniofacial skeleton. The mechanical response to each impact was compared in the time and frequency domains. Impacts to the maxilla and its associated soft tissues tended to be attenuated, while impacts to the cranial vault, specifically to the occipital, produced the most severe response. Results suggest that the facial skeleton and its soft tissues act as an energy absorbing zone. Overall skull resonant frequencies were dominated by peaks between 113 and 521Hz. Minor peaks were also excited at frequencies above 1000Hz. Results demonstrated that the overall resonant frequency response was not significantly influenced by impact height or location.
Keywords:
Biomechanics; craniofacial skeleton; experimental; cadaver; head impact; vibration response; sub-fracture cranial impacts