En vertu de la fidélité de ses interactions supramoléculaires, ainsi que ses caractéristiques structurales et biologiques, l'ADN est un ajout programmable, contrôlable et, donc, extrêmement utile dans la science des matériaux. Face aux progrès établis dans ce domaine, le rôle de l'ADN et de l'ARN n'est plus restreint qu'à la biologie; en effet, les atouts des acides nucléiques en tant que composants de matériaux synthétiques avancés en sont plusieurs. L'étude de l'auto-assemblage de l'ADN est en évolution vive, axée plutôt vers des réalisations futures au niveau médical, biologique, nano- électronique et nano-optique. Pour que l'ADN adopte un rôle central au sein de la nanotechnologie et la nanomédecine, le contrôle de l'auto-assemblage sur plusieurs échelles de longueur est un prérequis absolu. Le travail réalisé dans cette thèse concerne l'auto-assemblage d'hybrides macromoléculaires d'ADN dans le but de pouvoir organiser ces derniers sur des longueurs au delà du nanométrique. Les concepts seront divisés parmi trois sous-thèmes: (1) La première partie propose des méthodes afin de pourvoir les assemblages de brins d'ADN d'un niveau d'ordre à longue échelle tel que connu chez les copolymères en bloc. Nous présentons la synthèse d'hybrides d'ADN à caractéristiques amphiphiles ainsi que leur assemblage hiérarchique en nano-fibres et en réseaux organisés. (2) Dans la deuxième partie, nous utilisons des assemblages uniformes d'ADN en 3D afin de diriger l'agrégation de chaines alkyles hydrophobiques en dessous de leur concentration micellaire critique (CMC) grâce à la complémentarité de l'ADN. (3) La dernière partie présente le placement hiérarchique de brins d'ADN amphiphiles, ainsi que de leurs assemblages, sur des nanotubes d'ADN. Les principes qui sont sortis de ces travaux démontrent la possibilité de maitriser la synthèse et l'auto-assemblage d'hybrides macromoléculaires d'ADN, ainsi que l'organisation hiérarchique de ceux-ci avec d'autres structures nanométriques à base d'ADN.