The trapeziometacarpal (TMC) joint is the one of the hand joints that is most affected by osteoarthritis (OA). The objective of this study was to determine if specific morphological parameters could be related to the amount of pressure endured by the joint which is one of the factors contributing to the development of this pathology.
We developed 15 individualized 3D computer aided design (CAD) models of the TMC joint, each generated from the CT scan of a different participant. For each participant, we measured several crucial morphological parameters: the width and length of the trapezium bone and dorso-volar and ulno-radial curvature, of the trapezium and the metacarpal bone. Each CAD model was converted into a finite element model, of both bones and the cartilage located in between. The joint forces applied during pinch grip and power grip tasks were then applied in order to estimate the contact pressures on joint cartilage for each model. Correlations between joint contact pressures and morphology of the trapezium and the metacarpal bone were then analysed.
Important variations of TMC joint pressures were observed. For both pinch and power grip tasks, the strongest correlation with joint contact pressure was with the dorso-volar curvature of the trapezium bone.
Our findings indicate that dorso-volar curvature of the trapezium bone has a significant impact on mechanical loadings on the TMC joint. This contributes to understanding the prevalence of OA in certain patients.