Cardiac fibrosis is a key contributor to the onset and progression of heart failure and occurs from extracellular matrix accumulation via activated cardiac fibroblasts. Cardiac fibroblasts activate in response to mechanical stress and have been studied in the past by applying forces and deformations to three-dimensional, cell-seeded gels and tissue constructs in vitro. Unfortunately, previous stretching platforms have traditionally not enabled mechanical property assessment to be performed with an efficient throughput, thereby limiting the full potential of in vitro mechanobiology studies. We have developed a novel in vitro platform to study cell-populated tissue constructs under dynamic mechanical stimulation while also performing repeatable, non-destructive stress–strain tests in living constructs. Additionally, this platform can perform these tests across all constructs in a multi-well plate simultaneously, providing exciting potential for direct, functional readouts in future screening applications. In our pilot application, we showed that cyclically stretching cell-populated tissue constructs composed of murine cardiac fibroblasts within a 3D fibrin matrix leads to collagen accumulation and increased tissue stiffness over a three-day time course. Results of this study validate our platform’s ability to apply mechanical loads to tissues while performing live mechanical analyses to observe cell-mediated tissue remodeling.
Keywords:
Fibroblast; Fibrin gel; In vitro platform; Bioreactor; Mechanical analysis; Tissue engineering; Fibrosis; Heart failure