Accurate estimation of the hip joint centre (HJC) location is critical for modelling the kinematics and kinetics of the lower limb. Regression equations are commonly used to predict the HJC from anatomical landmarks on the pelvis, such as those published by Tylkowski et al., Andriacchi et al., Bell et al., and Seidel et al. Using a population of 159 CT-segmented pelvises, we assessed the accuracy of these methods as originally reported, and refined their parameters based on our larger cohort.
We found the Tylkowski, Bell, and Seidel methods had mean Euclidean errors of 22.5, 26.4, and 17.9 mm, respectively. With new parameters for each method ‘back-calculated’ from our pelvic population, each method’s error was reduced by an average of 69 %, with mean absolute errors of 7.9, 6.6, and 5.9 mm, respectively. For all methods, error has been reduced to below 1 cm, well below published levels for pelvic landmark estimation methods. These results highlight the need to validate and re-calibrate joint centre prediction methods on large, representative datasets to account for natural morphological variations.