Femoroacetabular impingement syndrome (FAIS) is a motion-related pathology of the hip characterized by pain, morphological abnormalities of the proximal femur, and an elevated risk of joint deterioration and hip osteoarthritis. Activities that require deep flexion are understood to induce impingement in cam FAIS patients, however, less demanding activities such as walking and pivoting may induce pain as well as alterations in kinematics and joint stability. Still, the paucity of quantitative descriptions of cam FAIS has hindered understanding underlying hip joint mechanics during such activities. Previous in silico studies have employed generalized model geometry or kinematics to simulate impingement between the femur and acetabulum, which may not accurately capture the interplay between morphology and motion. In this study, we utilized models with participant-specific bone and articular soft tissue anatomy and kinematics measured by dual-fluoroscopy to compare hip contact mechanics of cam FAIS patients to controls during four activities of daily living (internal/external pivoting and level/incline walking). Averaged across the gait cycle during incline walking, patients displayed increased strain in the anterior joint (labrum strain: p-value = 0.038, patients: 11.7 ± 6.7 %, controls: 5.0 ± 3.6 %; cartilage strain: p-value = 0.029, patients: 9.1 ± 3.3 %, controls: 4.2 ± 2.3). Patients also exhibited increased average anterior cartilage strains during external pivoting (p-value = 0.039; patients: 13.0 ± 9.2 %, controls: 3.9 ± 3.2 %]). No significant differences between patient and control contact area and strain were found for level walking and internal pivoting. Our study provides new insights into the biomechanics of cam FAIS, including spatiotemporal hip joint contact mechanics during activities of daily living.
Keywords:
Hip; Gait; Femoroacetabular Impingement Syndrome; Acetabular Labrum; Acetabular Cartilage; Dual-Fluoroscopy