Globally, hundreds of millions of people face mobility challenges in their daily life due to obesity, injury, muscle weakness and deterioration, and age. Mobility is closely related to people’s independence and quality of life. Having limited mobility impacts many factors such as physical activity, quality of sleep, and symptoms of depression and anxiety.
Historically, people address these mobility challenges by visiting experts in a clinic. The patient discusses the problem, performs some physical or medical tests using laboratory equipment, and then receives a diagnosis or rehabilitation instruction from the clinician. Periodic visits may be needed for rehabilitation or monitoring their progression. People must be able to reach a clinic, afford the payments, and make the time for the visits and tests in order to try to solve their mobility challenge. Thus, only a small fraction of the global population can benefit from the knowledge and solutions provided by a clinic. Translating these clinical solutions for use at home could address mobility challenges on a larger scale.
Creating at home solutions to these mobility challenges is difficult because the technology must be both portable and accurate. Ideally, these at home solutions would be wearable, low-cost, and easily used for days or weeks. In addition, these at home solutions must be accurate enough to provide meaningful outcomes to mobility. Clinical solutions may rely on expert knowledge, careful calibration of sensors, and specialized equipment which are challenging to imbue into a device that can be operated by any person.
This thesis presents the design and evaluation of wearable systems to monitor movement, estimate energy expenditure, and optimize exoskeleton assistance. These projects explore how clinical mobility tools can be translated into wearable solutions.Wearable technology may be able to provide the same functionality as clinical tools to a much broader population facing mobility challenges. Thus, these wearable tools may allow many more people to improve their mobility.