Hip fracture is the most common complication of osteoporosis, and its major contributor is compromised femoral strength. This study aimed to develop practical machine learning models based on clinical quantitative computed tomography (QCT) images for predicting proximal femoral strength. Eighty subjects with entire QCT data of the right hip region were randomly selected from the full MrOS cohorts, and their proximal femoral strengths were calculated by QCT-based finite element analysis (QCT/FEA). A total of 50 parameters of each femur were extracted from QCT images as the candidate predictors of femoral strength, including grayscale distribution, regional cortical bone mapping (CBM) measurements, and geometric parameters. These parameters were simplified by using feature selection and dimensionality reduction. Support vector regression (SVR) was used as the machine learning algorithm to develop the prediction models, and the performance of each SVR model was quantified by the mean squared error (MSE), the coefficient of determination (R²), the mean bias, and the SD of bias. For feature selection, the best prediction performance of SVR models was achieved by integrating the grayscale value of 30% percentile and specific regional CBM measurements (MSE ≤ 0.016, R²≥ 0.93); and for dimensionality reduction, the best prediction performance of SVR models was achieved by extracting principal components with eigenvalues greater than 1.0 (MSE ≤ 0.014, R²≥ 0.93). The femoral strengths predicted from the well-trained SVR models were in good agreement with those derived from QCT/FEA. This study provided effective machine learning models for femoral strength prediction, and they may have great potential in clinical bone health assessments.
Keywords:
bone strength prediction; finite element analysis; machine learning; proximal femur; QCT