When football originated in the 1800s, players wore no protective equipment. Between 1869 and 1905, there were 18 deaths and 159 serious injuries attributed to the sport. Following this, players began to wear protective equipment. The first use of a football helmet was in 1893, made of leather and designed to reduce the risk of skull fracture. Initially, football helmets were intended to protect a player against the most severe hits they would experience on the field. More recently, it has been shown that mild traumatic brain injuries, such as concussions, can induce long-term neurodegenerative processes. Since their introduction, helmets have transformed into plastic shells with padding designed to mitigate accelerations on the brain.
With the growing concern for player safety, regulating bodies, like the National Operating Committee on Standards for Athletic Equipment, have implemented standards for protective equipment, including football helmets. On top of these standards, there have been multiple methods developed to assess helmet performance with different testing apparatuses. Manufacturers are interested in how their helmet performs according to multiple testing methods. This could be costly if they do not have the proper testing equipment that a protocol utilizes. This thesis assesses the interchangeability of different test equipment to reproduce a testing protocol. The desire to perform well in testing standards has driven the improvement of helmet performance and continued design innovation. The second aim of this thesis is to evaluate helmet performance and its relationship with design changes in football helmets manufactured between 1980 and 2018.