Mechanical stress is involved in the onset of sports-related enthesopathy. Although the amount of exercise undertaken is a recognized problem during disease onset, changes in muscle contraction type are also involved in the increase in mechanical stress during exercise. This study aimed to clarify the effects of increased mechanical stress associated with muscle contraction type and amount of exercise on enthesis. Twenty mice underwent treadmill exercise, and the muscle contraction type and overall load during exercise were adjusted by varying the angle and speed conditions. Histological analysis was used to the cross-sectional area of the muscle; area of the enthesis fibrocartilage (FC), and expression of inflammation-, degeneration-, and calcification-related factors in the FC area. In addition, the volume and structure of the bone and FC area were examined using microcomputer imaging. Molecular biological analysis was conducted to compare relative expression levels of inflammation and cytokine-related factors in tendons. The Overuse group, which increased the amount of exercise, showed no significant differences in parameters compared to the sedentary mice (Control group). The mice subjected to slow-speed downhill running (Misuse group) showed pathological changes compared to the Control and Overuse groups, despite the small amount of exercise. Thus, the enthesis FC area may be altered by local mechanical stress that would be increased by eccentric muscle contraction rather than by mechanical stress that increases with the overall amount of exercise.
Clinical Significance: The muscle contraction type might be more involved in the onset of sports-related enthesopathy rather than the amount of exercise.