Osteoarthritis (OA) affects 26 million Americans, or approximately 14% of the adult population. The incidence of OA is predicted to dramatically increase in the next 20 years as the US grows older and the rate of obesity continues to increase. There are currently no clinical interventions that cure OA. Current biomaterial delivery systems exhibit several limitations. First, most drug-delivery particles are hydrophobic, which is not optimal for hydrophilic protein encapsulation. Second, hydrophobic particles, such as PLGA, could cause wear damage to the already-fragile OA cartilage structure. Additionally, these particles usually suffer from non-specific protein adsorption, which causes increased phagocytosis and can lead to increased inflammation. New therapies that increase the effectiveness of OA treatments or reverse OA disease progression will greatly decrease the economic costs and individual pain associated with this disease.
The goal of this thesis was to develop a new drug-delivering material to deliver anti-inflammatory protein for treating OA. Our central hypothesis for this work is that a controlled release/presentation system will more effectively deliver anti-inflammatory protein therapies to the OA joint.
The primary goal of this work was to synthesize a block copolymer that could selfassemble into injectable, sub-micron-scale particles and would allow an anti-inflammatory protein, IL-1ra, to be tethered to its surface for efficient protein delivery. The block copolymer incorporated an oligo-ethylene monomer for tissue compatibility and non-fouling behavior, a 4-nitrophenol group for efficient protein tethering, and cyclohexyl methacrylate, a hydrophobic monomer, for particle stability. We engineered the copolymer and tested it in both in vitro culture experiments and an in vivo model to evaluate protein retention in the knee joint. The rationale for this project was that the rational design and synthesis of a new drug- and protein-delivering material can create a modular polymer particle that can deliver multi-faceted therapies to treat OA.
This work characterizes the in vitro and in vivo behavior of our polymer particle system. The protein tethering strategy allows IL-1ra protein to be tethered to the surface of these particles. Once tethered, IL-1ra maintains its bioactivity and actively targets synoviocytes, cells crucial to the OA pathology. This binding happens in an IL-1-dependent manner. Furthermore, IL-1ra-tethered particles are able to inhibit IL-1β-induced NF-κB activation. These studies show that this particle system has the potential to deliver IL-1ra to arthritic joints and that it has potential for localizing/targeting drugs to inflammatory cells of interest as a new way to target OA drug treatments.