Parkinson’s disease (PD) is a movement disorder traditionally thought to be caused by the degeneration of striatal dopaminergic neurons in the substantia nigra. One of the most devastating symptoms of PD that can decrease mobility and substantially impair quality of life is freezing of gait (FOG). Currently, the treatments for the motor symptoms of PD (e.g., levodopa, deep brain stimulation) are ineffective at managing FOG as the disease progresses. These treatments only target the cortical-striatal pathways of volitional movement that are dependent on dopamine, whereas FOG may be caused by the degeneration of other non-dopaminergic subcortical nuclei that are involved with posture and gait control (e.g., the pedunculopontine nucleus). A well-characterized behavior observed in PD that could contribute to FOG is a diminished ability to properly coordinate anticipatory postural adjustments (APAs) prior to the first step. In particular, diminished muscle activation leads to impaired limb mechanics and slower, less-coordinated gait initiation. Sensory cues have been demonstrated to improve gait initiation behaviors, possibly because they provide relevant information for movement to the motor cortex through cerebellar-thalamo-parietal pathways that remain intact during the disease process. However, sensory cues are not always reliable or effective in all contexts and are unable to directly modulate the force production of the user. Forms of mechanical stimuli can amplify force production during APAs by directly modulating force production and providing relevant timing and magnitude information through afferent sensory pathways. To date, no mechanical assistance that mimics the desired motion during an APA provided at the ankle joint in the form of modest ankle torques has been tested. The overall research objective of this dissertation work was to test the hypothesis that mechanical assistance provided at the ankle joint can be an effective paradigm for facilitating the diminished gait initiation behaviors in persons with PD and FOG symptoms. Biomechanical measurements and mechanical modeling techniques were used to explore the neuromechanical factors(e.g., cognitive, sensorimotor, biomechanical) that could enable this type of intervention or therapy.