An in vitro model for neural trauma was characterized and validated. The model is based on a novel device that is capable of applying high strain rate, homogeneous, and equibiaxial deformation to neural cells in culture. The deformation waveform is fully arbitrary and controlled via closed-loop feedback. Intracellular calcium ([Ca2+]i) alterations were recorded in real time throughout the imposed strain with an epifluorescent microscopy system. Peak change in [Ca2+]i, recovery of [Ca2+]i, and percent responding NG108-15 cells were shown to be dependent on strain rate (1−1 to 10−1) and magnitude (0.1 to 0.3 Green’s Strain). These measures were also shown to depend significantly on the interaction between strain rate and magnitude. This model for neural trauma is a robust system that can be used to investigate the cellular tolerance and response to traumatic brain injury.
Keywords: