Background: This study was designed to explore the mechanisms through which chondrocytes regulated endothelial cell migration and angiogenesis in osteoarthritis (OA).
Methods: The expressions of related genes of OA were detected by Western blot and real-time quantitative PCR. Chondrocytes were co-cultured with endothelial cells, and migration as well as angiogenesis rates, and vascular endothelial growth factor (VEGF) secretion of the cells were detected. The relationship between miRNA and TrkB were analyzed by bioinformatics analysis, RNA immunoprecipitation and dual-luciferase assays. The effects of miRNA on the histopathology of the OA mice were determined.
Results: The expressions of NGF, TrkA, TrkB, and ShcB were increased significantly in OA patients. IL-1β promoted the expressions of TrkA, TrkB, and ShcB in chondrocytes and inhibited the expressions of chondrogenic differentiation markers, but shTrkB partially reversed IL-1β-mediated chondrogenic differentiation. Overexpression of TrkB promoted cell migration, angiogenesis, and VEGF levels, while silencing ShcB reversed the regulation of TrkB. Moreover, chondrocytes miR-214-3p regulated endothelial cell migration and angiogenesis by targeting TrkB paracrine VEGF to activate PI3K/Akt pathway proteins. In addition, overexpressed miR-214-3p improved collagenase-induced cartilage and synovial damage in OA mice.
Conclusion: The activation of TrkB/ShcB signaling pathway paracrine VEGF is mediated by miR-214-3p in chondrocytes and it regulates endothelial cell migration and angiogenesis in the development of OA.