BMPs were purified from demineralized bone matrix based on their ability to induce new bone <em>in vivo</em> and they represent a large member of the TGF-β superfamily of proteins. BMPs serve as morphogenic signals for mesenchymal stem cell migration, proliferation and subsequently differentiation into cartilage and bone during embryonic development. A BMP when implanted with a collagenous carrier in a rat subcutaneous site is capable of inducing new bone by mimicking the cellular events of embryonic bone formation. Based on this biological principle, BMP2 and BMP7 containing collagenous matrix as carrier have been developed as bone graft substitutes for spine fusion and long bone fractures. Here, we describe a novel autologous bone graft substitute that contains BMP6 delivered within an autologous blood coagulum as carrier and summarize the biology of osteogenic BMPs in the context of bone repair and regeneration specifically the critical role that carrier plays to support osteogenesis.
Keywords:
BMP; BMP carrier; Bone formation; Bone repair