The topology optimization (TO) process has the objective to structurally optimize products in various industries, such as in biomechanical engineering. Additive manufacturing facilitates this procedure and enables the utility of advanced structures in order to achieve the optimal product design. Currently, orthopedic implants are fabricated from metal or metal alloys with totally solid structure to withstand the applied loads; nevertheless, such a practice reduces the compatibility with human tissues and increases the manufacturing cost as more feedstock material is needed. This article investigates the possibility of applying bioinspired lattice structures (cellular materials) in order to topologically optimize an orthopedic hip implant, made of Inconel 718 superalloy. Lattice structures enable topology optimization of an object by reducing its weight and increasing its porosity without compromising its mechanical behavior. Specifically, three different bioinspired advanced lattice structures were investigated through finite element analysis (FEA) under in vivo loading. Furthermore, the regions with lattice structure were optimized through functional gradation of the cellular material. Results have shown that optimal design of hip implant geometry, in terms of stress behavior, was achieved through functionally graded lattice structures and the hip implant is capable of withstanding up to two times the in vivo loads, suggesting that this design is a suitable and effective replacement for a solid implant.
Keywords:
topology optimization; TPMS structures; lattice structures; FEA; FEM; hip implant; trabecular bone; gyroid; Schwartz diamond; Voronoi