The deformation mechanism of incremental sheet forming (ISF) is examined experimentally through forming specially prepared copper sheets. Strain distributions through the thickness of the sheets are measured for two configurations of ISF: two-point incremental forming (TPIF) and single-point incremental forming (SPIF), and a comparison is made to pressing. The measurements show that the deformation mechanisms of both SPIF and TPIF are stretching and shear in the plane perpendicular to the tool direction, with shear in the plane parallel to the tool direction. Strain components increase on successive laps, and the most significant component of strain is shear parallel to the tool direction. Increasing stretching and shear perpendicular to the tool direction account for differences between the sine law prediction and measured wall thickness for both SPIF and TPIF. The observed mechanisms of SPIF and TPIF differ from a mechanism of pure shear that has previously been assumed.
Keywords:
Incremental sheet forming; Sine law; Deformation mechanics; Shear spinning; Pressing; Forming limits