Foot sole sensitivity is commonly assessed while individuals are seated or prone; however the primary role of foot sole cutaneous feedback is for the control of upright stance and gait. The aim of this study was to compare vibration perceptual thresholds across the foot sole between sitting and standing postures. Vibration perceptual thresholds were measured in sitting and standing postures in 18 healthy participants (8 male) using a custom vibration device. Two foot sole locations (heels and metatarsals) were tested at four vibration frequencies (3, 15, 40, and 250 Hz) selected to target different cutaneous afferent populations. At each frequency, perceptual thresholds across the foot sole were significantly higher in the standing posture compared to the sitting posture; this is indicative of lower sensitivity while standing. In addition, threshold differences between the heels and metatarsals for lower frequency vibratory stimuli were more pronounced while standing, with higher thresholds observed at the heels. Our results demonstrate that standing significantly alters sensitivity across the foot sole. Therefore, conducting perceptual tests at the foot sole during stance could potentially provide more direct information about the ability of cutaneous afferents to signal tactile information in a state where this feedback can contribute to postural control.
Keywords:
Foot sole; Cutaneous afferent; Vibration; Standing; Skin sensitivity