In citation network analysis, complex behavior is reduced to a simple edge, namely, node A cites node B. The implicit assumption is that A is giving credit to, or acknowledging, B. It is also the case that the contributions of all citations are treated equally, even though some citations appear multiply in a text and others appear only once. In this study, we apply text-mining algorithms to a relatively large dataset (866 information science articles containing 32,496 bibliographic references) to demonstrate the differential contributions made by references. We (1) look at the placement of citations across the different sections of a journal article, and (2) identify highly cited works using two different counting meth- ods (CountOne and CountX). We find that (1) the most highly cited works appear in the Introduction and Literature Review sections of citing papers, and (2) the citation rankings produced by CountOne and CountX differ. That is to say, counting the number of times a bibliographic reference is cited in a paper rather than treating all references the same no matter how many times they are invoked in the citing article reveals the differential contributions made by the cited works to the citing paper.
Keywords:
Content-based citation analysis; Citation;Mentioning; Citation analysis