Lateral ankle sprains continue to be the most common injury sustained by athletes and create an annual healthcare burden of over $4 billion in the U.S. alone. Foot inversion is suspected in these cases, but the mechanism of injury remains unclear. While kinematics and kinetics data are crucial in understanding the injury mechanisms, ligament behaviour measures ‐ such as ligament strains ‐ are viewed as the potential causal factors of ankle sprains. This review article demonstrates a novel methodology that integrates model matching video analyses with computational simulations in order to investigate injury‐producing events for a better understanding of such injury mechanisms. In particular, ankle joint kinematics from actual injury incidents were deduced by model matching video analyses and then input into a generic computational model based on rigid bone surfaces and deformable ligaments of the ankle so as to investigate the ligament strains that accompany these sprain injuries. These techniques may have the potential for guiding ankle sprain prevention strategies and targeted rehabilitation therapies.
Keywords:
Injury, Lateral ankle sprain, Kinematics, Ligament strain, Methodology