Development and validation of detailed 3-D finite element model of human skull used for explicit dynamic simulation of impact conditions is presented in the paper. The FEmodel is based on the series of computer tomography scans of resolution 512x512 pixels taken in 1mm slices. Fully automated direct generation of the volumetric tetrahedral mesh based on the Marching Cubes Algorithm, Laplacian smoothing and Delaunay tetrahedralisation is used to develop the geometry of both the human skull and the brain.
Results obtained using this detailed FE model are compared to experimental results from a standard drop test as well as a simplified version of the skull model based on geometry of a head form used in our experiments. These experiments use a standard metal head form of variable size. Results from both the experimental and numerical modelling will be used to describe possible injury mechanisms and quantify design parameters of protective helmet related to a specific impact event.