Numerical simulation of stretch flange forming of Al–Mg sheet AA5182 was performed using the upper and lower bound constitutive models of Gurson–Tvergaard–Needleman (GTN) and Sun and Wang, respectively. Stress and strain-controlled nucleation rules are adopted for both models. The lower bound model of Sun and Wang has been extended to include the void coalescence criterion of Tvergaard and Needleman to form the so-called Sun–Tvergaard–Needleman (STN) model. Upper and lower bound formability predictions are combined to create a predictive formability band as actual formability lies between these limits. The resulting formability predictions are compared with experimental results and an appropriate void nucleation stress and strain suggested.
Keywords:
Stretch flange; Lower bound; Predictive formability band; Sheet metal forming; Ductile fracture