This paper describes recently developed procedures for local conformal refinement and coarsening of all-hexahedral unstructured meshes. Both refinement and coarsening procedures take advantage of properties found in the dual or "twist planes" f the mesh. A twist plane manifests itself as a conformal layer or sheet of hex elements within the global mesh. We suggest coarsening techniques that will identify and remove sheets to satisfy local mesh density criteria while not seriously degrading element quality after deletion. A two-dimensional local coarsening algorithm is introduced. We also explain local hexahedral refinement procedures that involve both the placement of new sheets, either between existing hex layers or within an individual layer. Hex elements earmarked for refinement may be defined to be as small as a single node or as large as a major group of existing elements. Combining both refinement and coarsening techniques allows for significant control over the density and quality of the resulting modified mesh.