2010 |
Gong H, Zhu D, Xiao Z, Zhang X, Zhang M. Relationship between apparent elastic modulus and microstructural parameters of senile vertebral trabecular bone. In: Proceedings of the 3rd International Conference on Biomedical Engineering and Informatics (bmei 2010). October 16-18, 2010; Yantai, China.1353-1356. |
2013 |
Boruah S, Henderson K, Subit D, Salzar RS, Shender BS, Paskoff G. Response of human skull bone to dynamic compressive loading. In: Proceedings of the 2013 International IRCOBI Conference on the Biomechanics of Injury. September 11-13, 2013; Gothenburg, Sweden.497-508. |
2013 |
Gustafson HM, Cripton PA. Use of digital image correlation for validation of surface strain in specimen-specific vertebral finite element models. In: Proceedings of the 9th Ohio State University Injury Biomechanics Symposium. May 19-21, 2013; Columbus, OH. |
2007 |
McDonnell P, McHugh PE, O’Mahoney D. Vertebral osteoporosis and trabecular bone quality. Annals Biomed Eng. February 2007;35(2):170-189. |
2011 |
Dragomir-Daescu D, Op Den Buijs J, McEligot S, Dai Y, Entwistle RC, Salas C, Melton LJ III, Bennet KE, Khosla S, Amin S. Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Annals Biomed Eng. February 2011;39(2):742-755. |
2019 |
Knowles NK, Kusins J, Faieghi M, Ryan M, Dall’Ara E, Ferreira LM. Material mapping of QCT-derived scapular models: a comparison with micro-CT loaded specimens using digital volume correlation. Annals Biomed Eng. February 2019;47(2):615-623. |
2019 |
Robinson DL, Tse KM, Franklyn M, Zhang J, Ackland D, Lee PVS. Cortical and trabecular bone fracture characterisation in the vertebral body using acoustic emission. Annals Biomed Eng. December 2019;47(12):2384-2401. |
2020 |
Esposito L, Minutolo V, Gargiulo P, Jonsson H Jr, Gislason MK, Fraldi M. Towards an app to estimate patient-specific perioperative femur fracture risk. Appl Sci (Basel). September 2020;10(18):6409. |
2016 |
Morales-Orcajo E, Bayod J, Barbosa de Las Casas E. Computational foot modeling: scope and applications. Arch Comput Methods Eng. September 2016;23(3):389-416. |
2008 |
Matsuura M, Eckstein F, Lochmüller E-M, Zysset PK. The role of fabric in the quasi-static compressive mechanical properties of human trabecular bone from various anatomical locations. Biomech Model Mechanobiol. February 2008;7(1):27-42. |
2009 |
Rincón-Kohli L, Zysset PK. Multi-axial mechanical properties of human trabecular bone. Biomech Model Mechanobiol. June 2009;8(3):195-208. |
2012 |
Vetter A, Witt F, Sander O, Duda GN, Weinkamer R. The spatio-temporal arrangement of different tissues during bone healing as a result of simple mechanobiological rules. Biomech Model Mechanobiol. January 2012;11(1-2):147-160. |
2019 |
Bravo AE, Osnaya LC, Ramírez EI, Jacobo VH, Ortiz A. The effect of bone marrow on the mechanical behavior of porcine trabecular bone. Biomed Phys Eng Express. 2019;5(6):065023. |
2020 |
Chen X, Hughes R, Mullin N, Hawkins RJ, Holen I, Brown NJ, Hobbs JK. Mechanical heterogeneity in the bone microenvironment as characterized by atomic force microscopy. Biophys J. August 4, 2020;119(3):502-513. |
2006 |
van Lenthe GH, Stauber M, Müller R. Specimen-specific beam models for fast and accurate prediction of human trabecular bone mechanical properties. Bone. December 2006;39(6):1182-1189. |
2007 |
Perilli E, Baleani M, Öhman C, Baruffaldi F, Viceconti M. Structural parameters and mechanical strength of cancellous bone in the femoral head in osteoarthritis do not depend on age. Bone. November 2007;41(5):760-768. |
2009 |
Bevill G, Eswaran SK, Farahmand F, Keaveny TM. The influence of boundary conditions and loading mode on high-resolution finite element-computed trabecular tissue properties. Bone. April 2009;44(4):573-578. |
2020 |
McKay M, Jackman TM, Hussein AI, Guermazi A, Liu J, Morgan EF. Association of vertebral endplate microstructure with bone strength in men and women. Bone. February 2020;131:115147. |
2020 |
Schileo E, Pitocchi J, Falcinelli C, Taddei F. Cortical bone mapping improves finite element strain prediction accuracy at the proximal femur. Bone. July 2020;136:115348. |
2020 |
Ulivieri FM, Rinaudo L, Piodi LP, Barbieri V, Marotta G, Sciumè M, Grifoni FI, Cesana BM. Usefulness of dual X-ray absorptiometry-derived bone geometry and structural indexes in mastocytosis. Calcif Tiss Int. December 2020;107(6):551-558. |
2008 |
Helgason B, Perilli E, Schileo E, Taddei F, Brynjólfsson S, Viceconti M. Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech (Bristol, Avon). 2008;23(2):135-146. |
2011 |
Johnston JD, Kontulainen SA, Masri BA, Wilson DR. Predicting subchondral bone stiffness using a depth-specific CT topographic mapping technique in normal and osteoarthritic proximal tibiae. Clin Biomech (Bristol, Avon). December 2011;26(10):1012-1018. |
2011 |
Cole JH, van der Meulen MCH. Whole bone mechanics and bone quality. Clin Orthop Relat Res. August 2011;469(8):2139-2149. |
2012 |
Abdel-Wahab AA, Maligno AR, Silberschmidt VV. Micro-scale modelling of bovine cortical bone fracture: analysis of crack propagation and microstructure using X-FEM. Comp Mater Sci. February 2012;52(1):128-135. |
2020 |
Li Z, Wang J, Song G, Ji C, Han X. Anisotropic and strain rate-dependent mechanical properties and constitutive modeling of the cancellous bone from piglet cervical vertebrae. Comput Methods Prog Biomed. May 2020;188:105279. |
2004 |
Haddock SM, Yeh OC, Mummaneni PV, Rosenberg WS, Keaveny TM. Similarity in the fatigue behavior of trabecular bone across site and species. J Biomech. February 2004;37(2):181-187. |
2004 |
Bayraktar HH, Keaveny TM. Mechanisms of uniformity of yield strains for trabecular bone. J Biomech. November 2004;37(11):1671-1678. |
2006 |
Verhulp E, van Rietbergen B, Huiskes R. Comparison of micro-level and continuum-level voxel models of the proximal femur. J Biomech. 2006;39(16):2951-2957. |
2007 |
Schileo E, Taddei F, Malandrino A, Cristofolini L, Viceconti M. Subject-specific finite element models can accurately predict strain levels in long bones. J Biomech. 2007;40(13):2982-2989. |
2007 |
Chevalier Y, Pahr D, Allmer H, Charlebois M, Zysset P. Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation. J Biomech. 2007;40(15):3333-3340. |
2007 |
Bevill G, Easley SK, Keaveny TM. Side-artifact errors in yield strength and elastic modulus for human trabecular bone and their dependence on bone volume fraction and anatomic site. J Biomech. 2007;40(15):3381-3388. |
2008 |
Schileo E, Taddei F, Cristofolini L, Viceconti M. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J Biomech. 2008;41(2):356-367. |
2008 |
Perilli E, Baleani M, Öhman C, Fognani R, Baruffaldi F, Viceconti M. Dependence of mechanical compressive strength on local variations in microarchitecture in cancellous bone of proximal human femur. J Biomech. 2008;41(2):438-446. |
2008 |
Burgers TA, Mason J, Niebur G, Ploeg HL. Compressive properties of trabecular bone in the distal femur. J Biomech. 2008;41(5):1077-1085. |
2008 |
Schileo E, Dall’Ara E, Taddei F, Malandrino A, Schotkamp T, Baleani M, Viceconti M. An accurate estimation of bone density improves the accuracy of subject-specific finite element models. J Biomech. August 7, 2008;41(11):2483-2491. |
2008 |
Harrison NM, McDonnell PF, O’Mahoney DC, Kennedy OD, O’Brien FJ, McHugh PE. Heterogeneous linear elastic trabecular bone modelling using micro-CT attenuation data and experimentally measured heterogeneous tissue properties. J Biomech. 2008;41(11):2589-2596. |
2008 |
Austman RL, Milner JS, Holdsworth DW, Dunning CE. The effect of the density–modulus relationship selected to apply material properties in a finite element model of long bone. J Biomech. November 14, 2008;41(15):3171-3176. |
2009 |
Eswaran SK, Bevill G, Nagarathnam P, Allen MR, Burr DB, Keaveny TM. Effects of suppression of bone turnover on cortical and trabecular load sharing in the canine vertebral body. J Biomech. March 11, 2009;42(4):517-523. |
2009 |
Burgers TA, Lakes RS, García-Rodríguez S, Piller GR, Ploeg H-L. Post-yield relaxation behavior of bovine cancellous bone. J Biomech. 2009;42(16):2728-2733. |
2009 |
Mc Donnell P, Harrison N, Liebschner MAK, Mc Hugh PE. Simulation of vertebral trabecular bone loss using voxel finite element analysis. J Biomech. 2009;42(16):2789-2796. |
2010 |
Chen G, Schmutz B, Epari D, Rathnayaka K, Ibrahim S, Schuetz MA, Pearcy MJ. A new approach for assigning bone material properties from CT images into finite element models. J Biomech. 2010;43(5):1011-1015. |
2010 |
Wolfram U, Wilke H-J, Zysset PK. Valid μ finite element models of vertebral trabecular bone can be obtained using tissue properties measured with nanoindentation under wet conditions. J Biomech. 2010;43(9):1731-1737. |
2011 |
Wolfram U, Wilke H-J, Zysset PK. Damage accumulation in vertebral trabecular bone depends on loading mode and direction. J Biomech. April 7, 2011;44(7):1164-1169. |
2011 |
Varghese B, Short D, Penmetsa R, Goswami T, Hangartner T. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion. J Biomech. April 29, 2011;(7):1374-1379. |
2011 |
Trabelsi N, Yosibash Z, Wutte C, Augat P, Eberle S. Patient-specific finite element analysis of the human femur: a double-blinded biomechanical validation. J Biomech. June 3, 2011;44(9):1666-1672. |
2012 |
Grassi L, Schileo E, Taddei F, Zani L, Juszczyk M, Cristofolini L, Viceconti M. Accuracy of finite element predictions in sideways load configurations for the proximal human femur. J Biomech. January 10, 2012;45(2):394-399. |
2012 |
Wille H, Rank E, Yosibash Z. Prediction of the mechanical response of the femur with uncertain elastic properties. J Biomech. April 30, 2012;45(7):1140-1148. |
2012 |
Hazrati Marangalou J, Ito K, van Rietbergen B. A new approach to determine the accuracy of morphology–elasticity relationships in continuum FE analyses of human proximal femur. J Biomech. November 15, 2012;45(15):2884-2892. |
2013 |
Nishiyama KK, Gilchrist S, Guy P, Cripton P, Boyd SK. Proximal femur bone strength estimated by a computationally fast finite element analysis in a sideways fall configuration. J Biomech. April 26, 2013;46(7):1231-1236. |
2014 |
Zhou B, Liu XS, Wang J, Lu XL, Fields AJ, Guo XE. Dependence of mechanical properties of trabecular bone on plate-rod microstructure determined by individual trabecula segmentation (ITS). J Biomech. February 7, 2014;47(3):702-708. |
2014 |
Martelli S, Kersh ME, Schache AG, Pandy MG. Strain energy in the femoral neck during exercise. J Biomech. June 3, 2014;47(8):1784-1791. |
2007 |
Yosibash Z, Padan R, Joskowicz L, Milgrom C. A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments. J Biomech Eng. June 2007;129(3):297-309. |
2013 |
Hardisty MR, Zauel R, Stover SM, Fyhrie DP. The importance of intrinsic damage properties to bone fragility: a finite element study. J Biomech Eng. January 2013;135(1):011004. |
2014 |
Chen Y, Pani M, Taddei F, Mazzà C, Li X, Viceconti M. Large-scale finite element analysis of human cancellous bone tissue micro computer tomography data: a convergence study. J Biomech Eng. October 2014;136(10):101013. |
2015 |
Oftadeh R, Perez-Viloria M, Villa-Camacho JC, Vaziri A, Nazarian A. Biomechanics and mechanobiology of trabecular bone: a review. J Biomech Eng. January 2015;137(1):010802. |
2020 |
Mancuso ME, Troy KL. Relating bone strain to local changes in radius microstructure following 12 months of axial forearm loading in women. J Biomech Eng. November 2020;142(11):111014. |
2020 |
Salem M, Westover L, Adeeb S, Duke K. An equivalent constitutive model of cancellous bone with fracture prediction. J Biomech Eng. December 2020;142(12):121004. |
2008 |
Keaveny TM, Hoffmann PF, Singh M, Palermo L, Bilezikian JP, Greenspan SL, Black DM. Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT scans. J Bone Miner Res. December 2008;23(12):1974-1982. |
2009 |
Orwoll ES, Marshall LM, Nielson CM, Cummings SR, Lapidus J, Cauley JA, Ensrud K, Lane N, Hoffmann PR, Kopperdahl DL, Keaveny TM; Osteoporotic Fractures in Men (MrOS) Study Group. Finite element analysis of the proximal femur and hip fracture risk in older men. J Bone Miner Res. March 2009;24(3):475-483. |
2009 |
Fields AJ, Eswaran SK, Jekir MG, Keaveny TM. Role of trabecular microarchitecture in whole‐vertebral body biomechanical behavior. J Bone Miner Res. September 2009;24(9):1523-1530. |
2010 |
Keaveny TM, Kopperdahl DL, Melton LJ III, Hoffmann PF, Amin S, Riggs BL, Khosla S. Age‐dependence of femoral strength in white women and men. J Bone Miner Res. May 2010;25(5):994-1001. |
2018 |
Kersh ME, Martelli S, Zebaze R, Seeman E, Pandy MG. Mechanical loading of the femoral neck in human locomotion. J Bone Miner Res. November 2018;33(11):1999-2006. |
2012 |
Kelly N, McGarry JP. Experimental and numerical characterisation of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue. J Mech Behav Biomed Mater. May 2012;9:184-197. |
2012 |
Campoli G, Weinans H, Zadpoor AA. Computational load estimation of the femur. J Mech Behav Biomed Mater. June 2012;10:108-119. |
2012 |
Vaughan TJ, McCarthy CT, McNamara LM. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone. J Mech Behav Biomed Mater. August 2012;12:50-62. |
2012 |
Weisse B, Aiyangar A, Affolter C, Gander R, Terrasi GP, Ploeg H. Determination of the translational and rotational stiffnesses of a L4-L5 functional spinal unit using a specimen-specific finite element model. J Mech Behav Biomed Mater. September 2012;13:45-61. |
2012 |
Wolfram U, Gross T, Pahr DH, Schwiedrzik J, Wilke H-J, Zysset PK. Fabric-based Tsai-Wu yield criteria for vertebral trabecular bone in stress and strain space. J Mech Behav Biomed Mater. November 2012;15:218-228. |
2017 |
Chen Y, Dall’Ara E, Sales E, Manda K, Wallace R, Pankaj P, Viceconti M. Micro-CT based finite element models of cancellous bone predict accurately displacement once the boundary condition is well replicated: a validation study. J Mech Behav Biomed Mater. January 2017;65:644-651. |
2019 |
Knowles NK, Langohr GDG, Faieghi M, Nelson A, Ferreira LM. Development of a validated glenoid trabecular density-modulus relationship. J Mech Behav Biomed Mater. February 2019;90:140-145. |
2019 |
Alexander SL, Gunnarsson CA, Weerasooriya T. Influence of the mesostructure on the compressive mechanical response of adolescent porcine cranial bone. J Mech Behav Biomed Mater. August 2019;96:96-107. |
2019 |
Lee Y, Ogihara N, Lee T. Assessment of finite element models for prediction of osteoporotic fracture. J Mech Behav Biomed Mater. September 2019;97:312-320. |
2020 |
Bahia MT, Hecke MB, Mercuri EGF, Pinheiro MM. A bone remodeling model governed by cellular micromechanics and physiologically based pharmacokinetics. J Mech Behav Biomed Mater. April 2020;104:103657. |
2020 |
Fleps I, Bahaloo H, Zysset PK, Ferguson SJ, Pálsson H, Helgason B. Empirical relationships between bone density and ultimate strength: a literature review. J Mech Behav Biomed Mater. October 2020;110:103866. |
2021 |
Gustafsson A, Tognini M, Bengtsson F, Gasser TC, Isaksson H, Grassi L. Subject-specific FE models of the human femur predict fracture path and bone strength under single-leg-stance loading. J Mech Behav Biomed Mater. January 2021;113:104118. |
2011 |
Yao H, Dao M, Carnelli D, Tai K, Ortiz C. Size-dependent heterogeneity benefits the mechanical performance of bone. J Mech Phys Solids. 2011;59(1):64-74. |
2020 |
Knowles NK, Kusins J, Columbus MP, Athwal GS, Ferreira LM. Morphological and apparent‐level stiffness variations between normal and osteoarthritic bone in the humeral head. J Orthop Res. March 2020;38(3):503-509. |
2010 |
Kadir MRA, Syahrom A, Öchsner A. Finite element analysis of idealised unit cell cancellous structure based on morphological indices of cancellous bone. Med Biol Eng Comput. May 2010;48(5):497-505. |
2019 |
Yassine RA, Hamade RF. Transversely isotropic and isotropic material considerations in determining the mechanical response of geometrically accurate bovine tibia bone. Med Biol Eng Comput. October 2019;57(10):2159-2178. |
2006 |
Peng L, Bai J, Zeng X, Zhou Y. Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Med Eng Phys. April 2006;28(3):227-233. |
2010 |
Lievers WB, Poljsak AS, Waldman SD, Pilkey AK. Effects of dehydration-induced structural and material changes on the apparent modulus of cancellous bone. Med Eng Phys. 2010;32(8):921-925. |
2011 |
Grassi L, Hraiech N, Schileo E, Ansaloni M, Rochette M, Viceconti M. Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur. Med Eng Phys. 2011;33(1):112-120. |
2011 |
Cong A, Buijs JOD, Dragomir-Daescu D. In situ parameter identification of optimal density–elastic modulus relationships in subject-specific finite element models of the proximal femur. Med Eng Phys. March 2011;33(2):164-173. |
2011 |
Yan Y-B, Qi W, Wang J, Liu L-F, Teo E-C, Tianxia Q, Ba J-j, Lei W. Relationship between architectural parameters and sample volume of human cancellous bone in micro-CT scanning. Med Eng Phys. July 2011;33(6):764-769. |
2012 |
Edwards WB, Troy KL. Finite element prediction of surface strain and fracture strength at the distal radius. Med Eng Phys. April 2012;34(3):290-298. |
2019 |
Yue Y, Yang H, Li Y, Zhong H, Tang Q, Wang J, Wang R, He H, Chen W, Chen D. Combining ultrasonic and computed tomography scanning to characterize mechanical properties of cancellous bone in necrotic human femoral heads. Med Eng Phys. April 2019;66:12-17. |
2019 |
Väänänen SP, Grassi L, Venäläinen MS, Matikka H, Zheng Y, Jurvelin JS, Isaksson H. Automated segmentation of cortical and trabecular bone to generate finite element models for femoral bone mechanics. Med Eng Phys. September 2019;70:19-28. |
2007 |
Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C. Nanoscale heterogeneity promotes energy dissipation in bone. Nat Mater. June 2007;6(6):454-462. |
2020 |
Jiang H, Robinson DL, Yates CJ, Lee PVS, Wark JD. Peripheral quantitative computed tomography (pQCT)–based finite element analysis provides enhanced diagnostic performance in identifying non-vertebral fracture patients compared with dual-energy X-ray absorptiometry. Osteoporos Int. January 2020;31(1):141-151. |
2020 |
Keaveny TM, Clarke BL, Cosman F, Orwoll ES, Siris ES, Khosla S, Bouxsein ML. Biomechanical computed tomography analysis (BCT) for clinical assessment of osteoporosis. Osteoporos Int. June 2020;31(6):1025-1048. |
2021 |
Jiang H, Robinson DL, Lee PVS, Krejany EO, Yates CJ, Hickey M, Wark JD. Loss of bone density and bone strength following premenopausal risk–reducing bilateral salpingo-oophorectomy: a prospective controlled study (WHAM Study). Osteoporos Int. January 2021;32(1):101-112. |
2010 |
Cristofolini L, Schileo E, Juszczyk M, Taddei F, Martelli S, Viceconti M. Mechanical testing of bones: the positive synergy of finite–element models and in vitro experiments. Philos Trans R Soc A-Math Phys Eng Sci. June 13, 2010;368(1920):2725-2763. |
2019 |
Colombo C, Libonati F, Rinaudo L, Bellazzi M, Ulivieri FM, Vergani L. A new finite element based parameter to predict bone fracture. PLoS One. December 5, 2019;14(12):e0225905. |
2020 |
Salem M, Westover L, Adeeb S, Duke K. Prediction of failure in cancellous bone using extended finite element method. Proc Inst Mech Eng Part H-J Eng Med. September 2020;243(9):988-999. |
2007 |
Fratzl P, Weinkamer R. Nature’s hierarchical materials. Prog Mater Sci. November 2007;52(8):1263-1334. |
2016 |
Haider IT. An Investigation on the Influence of Stumbling Loads on Femoral Fracture Risk, Using a Novel Gradient Enhanced Quasibrittle Finite Element Model [PhD thesis]. Ottawa, ON: Carleton University; 2016. |
2013 |
Kim G. The Effects of Mineralization and Crystallinity on the Mechanical Behavior of Bone [PhD thesis]. Ithaca, NY: Cornell University; May 2013. |
2018 |
Chen JTH. Alterations in Bone Tissue Properties With Parathyroid Hormone Treatment [PhD thesis]. Ithaca, NY: Cornell University; May 2018. |
2005 |
Cook RB. Non-Invasively Assessed Skeletal Bone Status and Its Relationship to the Biomechanical Properties and Condition of Cancellous Bone [PhD thesis]. Cranfield, UK: Cranfield University; December 18, 2005. |
2016 |
Florencio FL. Multiscale Modelling of Trabecular Bone: From Micro to Macroscale [PhD thesis]. Edinburgh, Scotland: University of Edinburgh; 2016. |
2018 |
Xie S. Characterisation of Time-Dependent Mechanical Behaviour of Trabecular Bone and Its Constituents [PhD thesis]. Edinburgh, Scotland: University of Edinburgh; 2018. |
2019 |
Bin Rosli AH. Characterisation of Trabecular Bone Behaviour Under Impact [PhD thesis]. Edinburgh, Scotland: University of Edinburgh; 2019. |
2005 |
Day JS. Bone Quality: The Mechanical Effects of Microarchitecture and Matrix Properties [PhD thesis]. Erasmus University Rotterdam; 2005. |
2016 |
Currier EJ. Predicting Peak Load of the Femoral Neck Using Structural Parameters [Master's thesis]. Urbana, IL: University of Illinois at Urbana-Champaign; 2016. |
2018 |
Yan C. Effect of Fatigue Loading on Impact Response of Rat Ulna [Master's thesis]. Urbana, IL: University of Illinois at Urbana-Champaign; 2018. |
2020 |
Song H. The Effect of Mechanical Loading on Bone During Growth [PhD thesis]. University of Illinois at Urbana-Champaign; 2020. |
2011 |
Abdel-Wahab AA-GM. Experimental and Numerical Analysis of Deformation and Fracture of Cortical Bone Tissue [PhD thesis]. Loughborough University; August 2011. |
2014 |
Holub O. Biomechanics of Spinal Metastases [PhD thesis]. University of Leeds; April 2014. |
2016 |
Grassi L. Femoral Strength Prediction Using Finite Element Models: Validation of Models Based on CT and Reconstructed DXA Images Against Full-Field Strain Measurements [PhD thesis]. Lund, Sweden: Lund University; 2016. |
2013 |
Vijayakumar V. Quantifying the Regional Variations in the Mechanical Properties of Cancellous Bone of the Tibia Using Indentation Testing and CT Imaging [Master's thesis]. Hamilton, ON: McMaster University; September 2013. |
2007 |
Tai K. Nanomechanics and Ultrastructural Studies of Cortical Bone: Fundamental Insights Regarding Structure-Function, Mineral-Organic Force Mechanics Interactions, and Heterogeneity [PhD thesis]. Cambridge, MA: Massachusetts Institute of Technology; June 2007. |
2010 |
Johnson TPM. On the Rate-Dependent Constitutive Response of Cortical and Trabecular Bone [PhD thesis]. Cambridge, MA: Massachusetts Institute of Technology; September 2010. |
2015 |
Oftadeh R. Hierarchical Analysis and Multiscale Modelling of Cellular Structures: From Meta Materials to Bone Structure [PhD thesis]. Boston, MA: Northeastern University; December 2015. |
2009 |
Dai Y. Subject-Specific Computational Modeling of Spinal Constructs [PhD thesis]. University of Notre Dame; April 2009. |
2010 |
Shi X. Effects of Architecture on Microdamage Susceptibility in Trabecular Bone [PhD thesis]. University of Notre Dame; April 2010. |
2015 |
Gargac J. Evaluation of Bone Healing, Damage, and Adaptation Using Computational Modeling and Image Processing Techniques [PhD thesis]. University of Notre Dame; July 2015. |
2017 |
Kreipke TC. Structural, Mechanical, and Biological Relationships of Trabecular Bone in Osteoporosis [PhD thesis]. Notre Dame, IN: University of Notre Dame; April 2017. |
2012 |
Kelly N. An Experimental and Computational Investigation of the Inelastic Behaviour of Trabecular Bone [PhD thesis]. Galway, Ireland: National University of Ireland Galway; September 2012. |
2020 |
O’Sullivan LM. Time-Sequence of Biomechanical Adaption in Trabecular Tissue During Estrogen Deficiency [PhD thesis]. National University of Ireland Galway; March 2020. |
2020 |
Karali A. Multi-Scale Evaluation of Bone Combining Indentation, in Situ XCT Mechanics and Digital Volume Correlation Portsmouth, England: University of Portsmouth; 2020. |
2005 |
Buie HR. Use of Finite Element Method Modelling and Rapid Prototyping to Study the Effect of Trabecular Bone Architecture on Apparent Mechanical Properties [Master's thesis]. Kingston, ON: Queen's University; November 2005. |
2013 |
Schumacher Y. Comparison of Two Loading Surface Preparation Methods on Rat Vertebral Bodies for Compression Testing [Master's thesis]. Kingston, Ontario, Canada: Queen’s University; September 2013. |
2012 |
Emerson NJ. Development of Patient-Specific CT-FE Modelling of Bone Through Validation Using Porcine Femora [PhD thesis]. University of Sheffield; September 2012. |
2016 |
Chen Y. Verification and Validation of MicroCT-Based Finite Element Models of Bone Tissue Biomechanics [PhD thesis]. Sheffield, UK: University of Sheffield; July 2016. |
2018 |
Costa MC. Prediction of the Risk of Vertebral Fracture in Patients With Metastatic Bone Lesions as a Tool for More Effective Patients’ Management [PhD thesis]. University of Sheffield; November 2018. |
2004 |
Mittra ES. Assessment of Trabecular Bone Quality Using Microstructure, Micro-Mechanics and Micro-Finite Element Modeling [PhD thesis]. Stony Brook, NY: Stony Brook University; May 2004. |
2006 |
Verhulp E. Analyses of Trabecular Bone Failure [PhD thesis]. Eindhoven, The Netherlands: Eindhoven University of Technology; 2006. |
2020 |
Salem M. Investigation of Pelvic Bone Fracture Mechanism and Simulated Treatment [PhD thesis]. Edmonton, AB: University of Alberta; 2020. |
2010 |
Johnston JD. Development of a Non-Invasive Imaging Technique for Characterizing Subchondral Bone Density and Stiffness [PhD thesis]. Vancouver, BC: University of British Columbia; December 2010. |
2014 |
Ariza OR. A Novel Approach to Finite Element Analysis of Hip Fractures Due to Sideways Falls [Master's thesis]. Vancouver, BC: University of British Columbia; April 2014. |
2016 |
Gustafson HM. Quantifying the Response of Vertebral Bodies to Compressive Loading Using Digital Image Correlation [PhD thesis]. Vancouver, BC: University of British Columbia; October 2016. |
2012 |
Nishiyama KKS. In Vivo Assessment of Bone Microarchitecture and Estimated Bone Strength [PhD thesis]. Calgary, AB: University of Calgary; October 2012. |
2013 |
Enns-Bray WS. Mapping Anisotropy of the Proximal Femur for Improved Image-Based Finite Element Analysis [Master's thesis]. Calgary, AB: University of Calgary; August 2013. |
2017 |
Fung A. Experimental Validation of Finite Element Predicted Bone Strain in the Human Metatarsal [Master's thesis]. Calgary, AB: University of Calgary; April 2017. |
2020 |
Michalski AS. A Quantitative Computed Tomography Approach Towards Opportunistic Osteoporosis Screening [PhD thesis]. Calgary, AB: University of Calgary; March 2020. |
2003 |
Fox JC. Biomechanics of the Proximal Femur: Role of Bone Distribution and Architecture [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2003. |
2008 |
Bevill GR. Micromechanical Modeling of Failure in Trabecular Bone [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2008. |
2010 |
Fields AJ. Trabecular Microarchitecture, Endplate Failure, and the Biomechanics of Human Vertebral Fractures [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2010. |
2013 |
Sanyal A. Bone Strength Multi-Axial Behavior: Volume Fraction, Anisotropy and Microarchitecture [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2013. |
2019 |
Sadoughi S. Micromechanics of Human Bone: Role of Architecture and Tissue Material Properties [PhD thesis]. Berkeley, CA: Berkeley, University of California; 2019. |
2012 |
Hardisty MR. Not Tough Enough: Why Bone Turns Pale When it Feels Stressed [PhD thesis]. Davis, CA: Davis, University of California; 2012. |
2020 |
Amromanoh OA. An Experimental Study of the Effect of Bone Inorganic-Organic Composition on the Mechanical Properties [Master's thesis]. Winnipeg, MB: University of Manitoba; April 2020. |
2020 |
Belda González R. Mechanical and Morphometric Characterization of Cancellous Bone [PhD thesis]. Universität Politècnica de València; March 2020. |
2018 |
Hosseini Kalajahi SM. Addressing Partial Volume Artifacts With Quantitative Computed Tomography-Based Finite Element Modeling of the Human Proximal Tibia [Master's thesis]. Saskatoon, SK: University of Saskatchewan; April 2018. |
2018 |
Khor F. Computational Modeling of Hard Tissue Response and Fracture in the Lower Cervical Spine Under Compression Including Age Effects [Master's thesis]. Waterloo, ON: University of Waterloo; 2018. |
2018 |
Reeves JM. An in-Silico Assessment of Stemless Shoulder Arthroplasty: From CT to Predicted Bone Response [PhD thesis]. London, ON: Western University; 2018. |
2020 |
Tavakoli A. The Effect of Humeral Short Stem Positioning, Humeral Head Contact, and Head Positioning on Bone Stress Following Total Shoulder Arthroplasty [Master's thesis]. University of Western Ontario; 2020. |
2008 |
Burgers TA. Press-Fit Fixation and Viscoelastic Response of a Bone-Implant Interface in the Distal Femur [PhD thesis]. Madison, WI: University of Wisconsin; 2008. |
2009 |
García-Rodríguez S. Mechanical Behavior of Trabecular Bone [PhD thesis]. Madison, WI: University of Wisconsin-Madison; 2009. |
2009 |
Schmidt JE. Biomechanical Evaluation of a Stemmed Tibial Implant [PhD thesis]. Madison, WI: University of Wisconsin; 2009. |
2011 |
Aiyangar AK. Physical and Computational Modeling of Subsidence of Anterior Interbody Fusion Devices [PhD thesis]. Madison, WI: University of Wisconsin; 2011. |
2011 |
Vivanco Morales JF. Investigation of Fabrication and Environmental Effects on Bioceramic Bone Scaffolds [PhD thesis]. Madison, WI: University of Wisconsin; 2011. |
2016 |
Meyer LA. Testing and Modeling Mechanical Properties of Ex Vivo Trabecular Bone [PhD thesis]. Madison, WI: University of Wisconsin; 2016. |